Homework 2 Solutions

Math 131B-2

- (3.26) The empty set \emptyset contains no points, so it is trivially true that any point in \emptyset has a neighbourhood in \emptyset . Ergo \emptyset is open. Similarly, \emptyset has no limit points, so \emptyset contains all its limit points and is closed. The entire space M contains all neighbourhoods of each of its points, hence is open. Furthermore, since M is the entire space it must contain all its limit points, hence M is closed.
- (3.30) Let $S \subset M$ be a finite subset of a metric space, i.e. $S = \{x_1, \dots, x_n\}$. Let y be any point of M, and let $r = \min\{d(x_i, y) : x_i \neq y\}$. Since r is the minimum of a set of positive numbers, r is also positive, and in particular r > 0. Ergo B(y; r) is a neighborhood of y which contains no point of S other than possibly y. Hence y is not a limit point of S. Since y was an arbitrary point of S, S has no limit points, and therefore trivially contains all its limit points. We conclude that S is closed.
- (3.31) (a) Let us show that any point $y \notin \overline{B}(a;r)$ is not a limit point of $\overline{B}(a;r)$. Given such a y, we know that r' = d(y, a) > r. Let $r'' = \frac{r'-r}{2}$, and consider the neighbourhood B(y;r'') of y. We claim this neighbourhood contains no points of $\overline{B}(a;r)$. For, suppose there was some point x in the intersection; then we would have

$$d(a, y) \leq d(a, x) + d(x, y)$$

$$< r'' + r$$

$$= \frac{r' - r}{2} + r$$

$$= \frac{r' + r}{2}$$

$$< r'$$

Here the last step uses the fact that r' > r. But this is nonsense, since d(a, y) = r'. We conclude there are no points of $\overline{B}(a; r)$ in B(y; r'), and therefore y is not a limit point of $\overline{B}(a; r)$. Hence $\overline{B}(a; r)$ contains all its limit points and is closed.

(b) Let (M, d) be any set with the discrete metric, and let x be a point of M. Then $B(x; 1) = \{x\}$, which has closure $\overline{B(a; r)} = \{x\}$, but $\overline{B}(x; 1) = M$.(Yes, this is sort of unhelpful notation.)

• (3.2)(a)The set S consisting of all integers has no accumulation points; every $x \in \mathbb{R}$ has a neighbourhood B(x; r) which contains no integer other than possibly x. This set

is closed.

(b)The set S=(a, b] is neither closed nor open; the point b has no neighbourhood contained in (a, b], so it isn't open, but a is a limit point not contained in the set, so it isn't closed. The set of limit points is [a, b].

(c) The set $\{\frac{1}{n} : n \in \mathbb{N}\}$ is neither closed nor open; notice that $\frac{1}{n}$ has no neighbourhood contained in S, but by the same token 0 is a limit point of S not contained in S. In fact the set of limit points is exactly $\{0\}$.

(d) If $S = \mathbb{Q}$, the set of limit points of S is all of \mathbb{R} , since every nbhd of any point in \mathbb{R} contains a rational number. But by the same token, no nbhd of a point in \mathbb{Q} is contained in \mathbb{Q} , since every interval contains an irrational number, so S is neither closed nor open.

(f) If $S = \{(-1)^n + \frac{1}{m} : n, m \in \mathbb{N}\}$, the two limit points are $\{\pm 1\}$, and the set is neither open nor closed, for the same reasons as part (c).

(g) Let $S = \{\frac{1}{n} + \frac{1}{m} : m, n \in \mathbb{N}\}$, we see that any neighbourhood $B(\frac{1}{n}; r) = (\frac{1}{n} - r, \frac{1}{n} + r)$ must contain a point $\frac{1}{n} + \frac{1}{m}$), such that $\frac{1}{m} < r$, so $\frac{1}{n}$ is a limit point of S for all n. Moreover, every neighbourhood B(0; r) = (-r, r) of 0 contains a point $\frac{1}{n} + \frac{1}{m}$ such that $\frac{1}{n}, \frac{1}{m} < \frac{r}{2}$. Therefore 0 is also a limit point. Hence S is neither open nor closed: certainly no point of S has a nbhd in S, but also S does not contain all its limit points.

• (3.12)(b)Let $S \subset T$. Let $x \in S'$ be a limit point of S. Then every ball B(x; r) around x contains a point y of S other than x, and y is also a point of T. Ergo x is also a limit point of T, so $S' \subseteq T'$.

(c) Let $x \in (S \cup T)'$, that is, let x be a limit point of $S \cup T$. We will show that x is a limit point of at least one of S and T. Suppose that x is not a limit point of S. Then there is some ball B(x;r) which does not contain a point of S. Therefore for any r' < r, B(x;r') contains no points of S. But x is a limit point of $S \cup T$, so $B(x;r') - \{x\}$ must contain a point of $S \cup T$. Ergo $B(x;r') - \{x\}$ contains a point of T, implying that every neighborhood of x contains a point of T other than x. Hence if x is not a limit point of S, x must be a limit point of T, so $x \in S' \cup T'$. This implies $(S \cup T)' \subseteq S' \cup T'$. Conversely, suppose that $x \in S' \cup T'$ is a limit point of at least one of S and T. Without loss of generality, x is a limit point of S, and every neighbourhood of x contains a point of S other than x, implying that every normal dots a point of $S \cup T$ other than x. Ergo $x \in (S \cup T)'$, so $S' \cup T' \subseteq (S \cup T)'$.

(f) Suppose T is a closed set containing S. Then T must contain all its limit points, and in particular if x is a limit point of $S, x \in T$. Therefore $\overline{S} \subset T$. Hence \overline{S} is the

smallest closed subset containing T.

- (3.43) Let $x \in \text{int} A$. Then there is a nbhd B(x; r) of x contained in A. In particular, B(x; r) does not contain a point of M A, so x is not a limit point of M A, and $x \notin \overline{M A}$. Therefore $A \subseteq M (\overline{M A})$. Conversely, if $x \in A \subseteq M (\overline{M A})$, then $x \notin M A$ and furthermore x is not a limit point of M A, implying that there is a neighbourhood B(x; r) of x which contains no point of M A. Therefore B(x; r) is contained in A, so $x \in \text{int} A$, and $\text{int} A \subseteq M (\overline{M A})$. Therefore $\text{int} A = M (\overline{M A})$.
- (3.46)(a) First, suppose that $x \in \int (\bigcap_{i=1}^{n} A_i)$. Then there is a neighbourhood B(x;r) of x in $\bigcap_{i=1}^{n} A_i$. Then $B(x;r) \subset A_i$ for each i, and we conclude that $x \in \int A_i$. Hence $x \in \bigcap_{i=1}^{n} \int (A_i)$, and therefore $\int (\bigcap_{i=1}^{n} A_i) \subseteq \bigcap_{i=1}^{n} \int (A_i)$.

Conversely, suppose $x \in \bigcap_{i=1}^{n} \int (A_i)$. Then $x \in \int A_i$ for each i, so there is some neighbourhood $B(x;r_i) \subset A_i$. Let $r = \min\{r_1, \cdots, r_n\}$, then $B(x;r) \subset B(x;r_i) \subset A_i$ for all $1 \leq i \leq n$, so $B(x;r) \subset \bigcap_{i=1}^{n} A_i$. We conclude that $x \in \int \bigcap_{i=1}^{n} A_i$, and therefore that $\bigcap_{i=1}^{n} \int (A_i) \subseteq \int \bigcap_{i=1}^{n} A_i$. The desired equality follows.

Note that the important place we used finiteness above is that the minimum of $\{r_1, \dots, r_n\}$ exists and is a positive number r > 0.

(b) Let F be a collection of subsets of M. Let $x \in \operatorname{int} \bigcap_{A \in F} A$. Then there is some neighbourhood B(x;r) of x contained in $\bigcap_{A \in F} A$. But then B(x;r) must be contained in every set A in the intersection, so x is in intA for every $A \in F$. This implies that $F \in \operatorname{int} A$ for every A in F, so $x \in \bigcap_{A \in F} \operatorname{int} A$. Ergo since x was arbitrary, int $\bigcap_{A \in F} A \subset x \in \bigcap_{A \in F} \operatorname{int} A$.

(c) Consider the sets $U_n = (-\frac{1}{n}, \frac{1}{n})$, for $n \in \mathbb{N}$ in \mathbb{R} with the standard metric. Each U_n is open and equal to its own interiors, so the intersection of the interiors is $\bigcap_{i=1}^{\infty} U_i = \{0\}$. However, the interior of the intersection is $\inf \bigcap_{i=1}^{\infty} U_i = \inf\{0\} = \emptyset$. So the interior of the intersection of the intersection of the interiors.

- The interior of A is int $A = (.5, 1] \times (2, 2.3)$ and the closure is $\overline{A} = [.5, 1] \times [2, 2.3]$. The interior of B is empty and the closure is $\overline{B} = B$ (note the point (0, 2) is not an element of S).
- Let M be an infinite set with the discrete metric and S any infinite subset of M. Then if x is an arbitrary element of S, $S \subset B(x; 2)$, so S is bounded. Moreover, if y is any point of M, the ball $B(y; \frac{1}{2})$ contains no points of S other than possibly y, so S has no limit points in M and is trivially closed. However, the collection $\{B(x; \frac{1}{2}) : x \in S\}$ is an

open cover of S which is infinite (because S is infinite) and has no finite subcover (because each open set in the cover contains exactly one point of S. Ergo S is not compact.