
Homework 2 Solutions

Math 131B-2

• (3.26) The empty set ∅ contains no points, so it is trivially true that any point in ∅ has
a neighbourhood in ∅. Ergo ∅ is open. Similarly, ∅ has no limit points, so ∅ contains all
its limit points and is closed. The entire space M contains all neighbourhoods of each
of its points, hence is open. Furthermore, since M is the entire space it must contain
all its limit points, hence M is closed.

• (3.30) Let S ⊂ M be a finite subset of a metric space, i.e. S = {x1, · · · , xn}. Let y
be any point of M , and let r = min{d(xi, y) : xi 6= y}. Since r is the minimum of a
set of positive numbers, r is also positive, and in particular r > 0. Ergo B(y; r) is a
neighborhood of y which contains no point of S other than possibly y. Hence y is not
a limit point of S. Since y was an arbitrary point of S, S has no limit points, and
therefore trivially contains all its limit points. We conclude that S is closed.

• (3.31) (a) Let us show that any point y /∈ B(a; r) is not a limit point of B(a; r). Given
such a y, we know that r′ = d(y, a) > r. Let r′′ = r′−r

2
, and consider the neighbourhood

B(y; r′′) of y. We claim this neighbourhood contains no points of B(a; r). For, suppose
there was some point x in the intersection; then we would have

d(a, y) ≤ d(a, x) + d(x, y)

< r′′ + r

=
r′ − r

2
+ r

=
r′ + r

2
< r′

Here the last step uses the fact that r′ > r. But this is nonsense, since d(a, y) = r′.
We conclude there are no points of B(a; r) in B(y; r′), and therefore y is not a limit
point of B(a; r). Hence B(a; r) contains all its limit points and is closed.

(b) Let (M,d) be any set with the discrete metric, and let x be a point of M . Then
B(x; 1) = {x}, which has closure B(a; r) = {x}, but B(x; 1) = M .(Yes, this is sort of
unhelpful notation.)

• (3.2)(a)The set S consisting of all integers has no accumulation points; every x ∈ R
has a neighbourhood B(x; r) which contains no integer other than possibly x. This set



is closed.

(b)The set S=(a, b] is neither closed nor open; the point b has no neighbourhood con-
tained in (a, b], so it isn’t open, but a is a limit point not contained in the set, so it
isn’t closed. The set of limit points is [a, b].

(c) The set { 1
n

: n ∈ N} is neither closed nor open; notice that 1
n

has no neighbourhood
contained in S, but by the same token 0 is a limit point of S not contained in S. In
fact the set of limit points is exactly {0}.

(d) If S = Q, the set of limit points of S is all of R, since every nbhd of any point in R
contains a rational number. But by the same token, no nbhd of a point in Q is contained
in Q, since every interval contains an irrational number, so S is neither closed nor open.

(f)If S = {(−1)n + 1
m

: n,m ∈ N}, the two limit points are {±1}, and the set is neither
open nor closed, for the same reasons as part (c).

(g) Let S = { 1
n

+ 1
m

: m,n ∈ N}, we see that any neighbourhood B( 1
n
; r) = ( 1

n
−r, 1

n
+r)

must contain a point 1
n

+ 1
m

), such that 1
m

< r, so 1
n

is a limit point of S for all n.
Moreover, every neighbourhood B(0; r) = (−r, r) of 0 contains a point 1

n
+ 1

m
such

that 1
n
, 1
m

< r
2
. Therefore 0 is also a limit point. Hence S is neither open nor closed:

certainly no point of S has a nbhd in S, but also S does not contain all its limit points.

• (3.12)(b)Let S ⊂ T . Let x ∈ S ′ be a limit point of S. Then every ball B(x; r) around
x contains a point y of S other than x, and y is also a point of T . Ergo x is also a
limit point of T , so S ′ ⊆ T ′.

(c) Let x ∈ (S ∪ T )′, that is, let x be a limit point of S ∪ T . We will show that x
is a limit point of at least one of S and T . Suppose that x is not a limit point of
S. Then there is some ball B(x; r) which does not contain a point of S. Therefore
for any r′ < r, B(x; r′) contains no points of S. But x is a limit point of S ∪ T , so
B(x; r′)− {x} must contain a point of S ∪ T . Ergo B(x; r′)− {x} contains a point of
T , implying that every neighborhood of x contains a point of T other than x. Hence
if x is not a limit point of S, x must be a limit point of T , so x ∈ S ′ ∪ T ′. This implies
(S∪T )′ ⊆ S ′∪T ′. Conversely, suppose that x ∈ S ′∪T ′ is a limit point of at least one of
S and T . Without loss of generality, x is a limit point of S, and every neighbourhood
of x contains a point of S other than x, implying that every nbhd of x contains a point
of S ∪ T other than x. Ergo x ∈ (S ∪ T )′, so S ′ ∪ T ′ ⊆ (S ∪ T )′.

(f) Suppose T is a closed set containing S. Then T must contain all its limit points,
and in particular if x is a limit point of S, x ∈ T . Therefore S ⊂ T . Hence S is the



smallest closed subset containing T .

• (3.43) Let x ∈ intA. Then there is a nbhd B(x; r) of x contained in A. In particular,
B(x; r) does not contain a point of M − A, so x is not a limit point of M − A, and
x /∈M − A. Therefore A ⊆M − (M − A). Conversely, if x ∈ A ⊆M − (M − A), then
x /∈ M − A and furthermore x is not a limit point of M − A, implying that there is
a neighbourhood B(x; r) of x which contains no point of M − A. Therefore B(x; r) is
contained in A, so x ∈ intA, and intA ⊆M−(M − A). Therefore intA = M−(M − A).

• (3.46)(a) First, suppose that x ⊂
∫

(∩ni=1Ai). Then there is a neighbourhood B(x; r)
of x in ∩ni=1Ai. Then B(x; r) ⊂ Ai for each i, and we conclude that x ∈

∫
Ai. Hence

x ∈ ∩ni=1

∫
(Ai), and therefore

∫
(∩ni=1Ai) ⊆ ∩ni=1

∫
(Ai).

Conversely, suppose x ∈ ∩n
i=1

∫
(Ai). Then x ∈

∫
Ai for each i, so there is some neigh-

bourhood B(x; ri) ⊂ Ai. Let r = min{r1, · · · , rn}, then B(x; r) ⊂ B(x; ri) ⊂ Ai for all
1 ≤ i ≤ n, so B(x; r) ⊂ ∩n

i=1Ai. We conclude that x ∈
∫
∩ni=1Ai, and therefore that

∩ni=1

∫
(Ai) ⊆

∫
∩ni=1Ai. The desired equality follows.

Note that the important place we used finiteness above is that the minimum of {r1, · · · rn}
exists and is a positive number r > 0.

(b) Let F be a collection of subsets of M . Let x ∈ int
⋂

A∈F A. Then there is some
neighbourhood B(x; r) of x contained in

⋂
A∈F A. But then B(x; r) must be contained

in every set A in the intersection, so x is in intA for every A ∈ F . This implies
that F ∈ intA for every A in F , so x ∈

⋂
A∈F intA. Ergo since x was arbitrary,

int
⋂

A∈F A ⊂ x ∈
⋂

A∈F intA.

(c) Consider the sets Un = (− 1
n
, 1
n
), for n ∈ N in R with the standard metric. Each Un is

open and equal to its own interiors, so the intersection of the interiors is
⋂∞

i=1 Ui = {0}.
However, the interior of the intersection is int

⋂∞
i=1 Ui = int{0} = ∅. So the interior of

the intersection is not equal to the intersection of the interiors.

• The interior of A is intA = (.5, 1]× (2, 2.3) and the closure is A = [.5, 1]× [2, 2.3]. The
interior of B is empty and the closure is B = B (note the the point (0, 2) is not an
element of S).

• Let M be an infinite set with the discrete metric and S any infinite subset of M . Then
if x is an arbitrary element of S, S ⊂ B(x; 2), so S is bounded. Moreover, if y is any
point of M , the ball B(y; 1

2
) contains no points of S other than possibly y, so S has no

limit points in M and is trivially closed. However, the collection {B(x; 1
2
) : x ∈ S} is an



open cover of S which is infinite (because S is infinite) and has no finite subcover (be-
cause each open set in the cover contains exactly one point of S. Ergo S is not compact.


