Homework 2 Solutions

Math 131B-2

- (3.26) The empty set \emptyset contains no points, so it is trivially true that any point in \emptyset has a neighbourhood in \emptyset. Ergo \emptyset is open. Similarly, \emptyset has no limit points, so \emptyset contains all its limit points and is closed. The entire space M contains all neighbourhoods of each of its points, hence is open. Furthermore, since M is the entire space it must contain all its limit points, hence M is closed.
- (3.30) Let $S \subset M$ be a finite subset of a metric space, i.e. $S=\left\{x_{1}, \cdots, x_{n}\right\}$. Let y be any point of M, and let $r=\min \left\{d\left(x_{i}, y\right): x_{i} \neq y\right\}$. Since r is the minimum of a set of positive numbers, r is also positive, and in particular $r>0$. Ergo $B(y ; r)$ is a neighborhood of y which contains no point of S other than possibly y. Hence y is not a limit point of S. Since y was an arbitrary point of S, S has no limit points, and therefore trivially contains all its limit points. We conclude that S is closed.
- (3.31) (a) Let us show that any point $y \notin \bar{B}(a ; r)$ is not a limit point of $\bar{B}(a ; r)$. Given such a y, we know that $r^{\prime}=d(y, a)>r$. Let $r^{\prime \prime}=\frac{r^{\prime}-r}{2}$, and consider the neighbourhood $B\left(y ; r^{\prime \prime}\right)$ of y. We claim this neighbourhood contains no points of $\bar{B}(a ; r)$. For, suppose there was some point x in the intersection; then we would have

$$
\begin{aligned}
d(a, y) & \leq d(a, x)+d(x, y) \\
& <r^{\prime \prime}+r \\
& =\frac{r^{\prime}-r}{2}+r \\
& =\frac{r^{\prime}+r}{2} \\
& <r^{\prime}
\end{aligned}
$$

Here the last step uses the fact that $r^{\prime}>r$. But this is nonsense, since $d(a, y)=r^{\prime}$. We conclude there are no points of $\bar{B}(a ; r)$ in $B\left(y ; r^{\prime}\right)$, and therefore y is not a limit point of $\bar{B}(a ; r)$. Hence $\bar{B}(a ; r)$ contains all its limit points and is closed.
(b) Let (M, d) be any set with the discrete metric, and let x be a point of M. Then $B(x ; 1)=\{x\}$, which has closure $\overline{B(a ; r)}=\{x\}$, but $\bar{B}(x ; 1)=M$. (Yes, this is sort of unhelpful notation.)

- (3.2)(a)The set S consisting of all integers has no accumulation points; every $x \in \mathbb{R}$ has a neighbourhood $B(x ; r)$ which contains no integer other than possibly x. This set
is closed.
(b)The set $\mathrm{S}=(a, b]$ is neither closed nor open; the point b has no neighbourhood contained in $(a, b]$, so it isn't open, but a is a limit point not contained in the set, so it isn't closed. The set of limit points is $[a, b]$.
(c) The set $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ is neither closed nor open; notice that $\frac{1}{n}$ has no neighbourhood contained in S, but by the same token 0 is a limit point of S not contained in S. In fact the set of limit points is exactly $\{0\}$.
(d) If $S=\mathbb{Q}$, the set of limit points of S is all of \mathbb{R}, since every nbhd of any point in \mathbb{R} contains a rational number. But by the same token, no nbhd of a point in \mathbb{Q} is contained in \mathbb{Q}, since every interval contains an irrational number, so S is neither closed nor open.
(f)If $S=\left\{(-1)^{n}+\frac{1}{m}: n, m \in \mathbb{N}\right\}$, the two limit points are $\{ \pm 1\}$, and the set is neither open nor closed, for the same reasons as part (c).
(g) Let $S=\left\{\frac{1}{n}+\frac{1}{m}: m, n \in \mathbb{N}\right\}$, we see that any neighbourhood $B\left(\frac{1}{n} ; r\right)=\left(\frac{1}{n}-r, \frac{1}{n}+r\right)$ must contain a point $\frac{1}{n}+\frac{1}{m}$), such that $\frac{1}{m}<r$, so $\frac{1}{n}$ is a limit point of S for all n. Moreover, every neighbourhood $B(0 ; r)=(-r, r)$ of 0 contains a point $\frac{1}{n}+\frac{1}{m}$ such that $\frac{1}{n}, \frac{1}{m}<\frac{r}{2}$. Therefore 0 is also a limit point. Hence S is neither open nor closed: certainly no point of S has a nbhd in S, but also S does not contain all its limit points.
- (3.12)(b)Let $S \subset T$. Let $x \in S^{\prime}$ be a limit point of S. Then every ball $B(x ; r)$ around x contains a point y of S other than x, and y is also a point of T. Ergo x is also a limit point of T, so $S^{\prime} \subseteq T^{\prime}$.
(c) Let $x \in(S \cup T)^{\prime}$, that is, let x be a limit point of $S \cup T$. We will show that x is a limit point of at least one of S and T. Suppose that x is not a limit point of S. Then there is some ball $B(x ; r)$ which does not contain a point of S. Therefore for any $r^{\prime}<r, B\left(x ; r^{\prime}\right)$ contains no points of S. But x is a limit point of $S \cup T$, so $B\left(x ; r^{\prime}\right)-\{x\}$ must contain a point of $S \cup T$. Ergo $B\left(x ; r^{\prime}\right)-\{x\}$ contains a point of T, implying that every neighborhood of x contains a point of T other than x. Hence if x is not a limit point of S, x must be a limit point of T, so $x \in S^{\prime} \cup T^{\prime}$. This implies $(S \cup T)^{\prime} \subseteq S^{\prime} \cup T^{\prime}$. Conversely, suppose that $x \in S^{\prime} \cup T^{\prime}$ is a limit point of at least one of S and T. Without loss of generality, x is a limit point of S, and every neighbourhood of x contains a point of S other than x, implying that every nbhd of x contains a point of $S \cup T$ other than x. Ergo $x \in(S \cup T)^{\prime}$, so $S^{\prime} \cup T^{\prime} \subseteq(S \cup T)^{\prime}$.
(f) Suppose T is a closed set containing S. Then T must contain all its limit points, and in particular if x is a limit point of $S, x \in T$. Therefore $\bar{S} \subset T$. Hence \bar{S} is the
smallest closed subset containing T.
- (3.43) Let $x \in \operatorname{int} A$. Then there is a nbhd $B(x ; r)$ of x contained in A. In particular, $B(x ; r)$ does not contain a point of $M-A$, so x is not a limit point of $M-A$, and $x \notin \overline{M-A}$. Therefore $A \subseteq M-(\overline{M-A})$. Conversely, if $x \in A \subseteq M-(\overline{M-A})$, then $x \notin M-A$ and furthermore x is not a limit point of $M-A$, implying that there is a neighbourhood $B(x ; r)$ of x which contains no point of $M-A$. Therefore $B(x ; r)$ is contained in A, so $x \in \operatorname{int} A$, and $\operatorname{int} A \subseteq M-(\overline{M-A})$. Therefore $\operatorname{int} A=M-(\overline{M-A})$.
- (3.46)(a) First, suppose that $x \subset \int\left(\cap_{i=1}^{n} A_{i}\right)$. Then there is a neighbourhood $B(x ; r)$ of x in $\cap_{i=1}^{n} A_{i}$. Then $B(x ; r) \subset A_{i}$ for each i, and we conclude that $x \in \int A_{i}$. Hence $x \in \cap_{i=1}^{n} \int\left(A_{i}\right)$, and therefore $\int\left(\cap_{i=1}^{n} A_{i}\right) \subseteq \cap_{i=1}^{n} \int\left(A_{i}\right)$.

Conversely, suppose $x \in \cap_{i=1}^{n} \int\left(A_{i}\right)$. Then $x \in \int A_{i}$ for each i, so there is some neighbourhood $B\left(x ; r_{i}\right) \subset A_{i}$. Let $r=\min \left\{r_{1}, \cdots, r_{n}\right\}$, then $B(x ; r) \subset B\left(x ; r_{i}\right) \subset A_{i}$ for all $1 \leq i \leq n$, so $B(x ; r) \subset \cap_{i=1}^{n} A_{i}$. We conclude that $x \in \int \cap_{i=1}^{n} A_{i}$, and therefore that $\cap_{i=1}^{n} \int\left(A_{i}\right) \subseteq \int \cap_{i=1}^{n} A_{i}$. The desired equality follows.

Note that the important place we used finiteness above is that the minimum of $\left\{r_{1}, \cdots r_{n}\right\}$ exists and is a positive number $r>0$.
(b) Let F be a collection of subsets of M. Let $x \in \operatorname{int} \bigcap_{A \in F} A$. Then there is some neighbourhood $B(x ; r)$ of x contained in $\bigcap_{A \in F} A$. But then $B(x ; r)$ must be contained in every set A in the intersection, so x is in $\operatorname{int} A$ for every $A \in F$. This implies that $F \in \operatorname{int} A$ for every A in F, so $x \in \bigcap_{A \in F} \operatorname{int} A$. Ergo since x was arbitrary, $\operatorname{int} \bigcap_{A \in F} A \subset x \in \bigcap_{A \in F} \operatorname{int} A$.
(c) Consider the sets $U_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$, for $n \in \mathbb{N}$ in \mathbb{R} with the standard metric. Each U_{n} is open and equal to its own interiors, so the intersection of the interiors is $\bigcap_{i=1}^{\infty} U_{i}=\{0\}$. However, the interior of the intersection is $\operatorname{int} \bigcap_{i=1}^{\infty} U_{i}=\operatorname{int}\{0\}=\emptyset$. So the interior of the intersection is not equal to the intersection of the interiors.

- The interior of A is int $A=(.5,1] \times(2,2.3)$ and the closure is $\bar{A}=[.5,1] \times[2,2.3]$. The interior of B is empty and the closure is $\bar{B}=B$ (note the the point $(0,2)$ is not an element of S).
- Let M be an infinite set with the discrete metric and S any infinite subset of M. Then if x is an arbitrary element of $S, S \subset B(x ; 2)$, so S is bounded. Moreover, if y is any point of M, the ball $B\left(y ; \frac{1}{2}\right)$ contains no points of S other than possibly y, so S has no limit points in M and is trivially closed. However, the collection $\left\{B\left(x ; \frac{1}{2}\right): x \in S\right\}$ is an
open cover of S which is infinite (because S is infinite) and has no finite subcover (because each open set in the cover contains exactly one point of S. Ergo S is not compact.

